Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Yeast replicative aging: a paradigm for defining conserved longevity interventions.

Identifieur interne : 000D77 ( Main/Exploration ); précédent : 000D76; suivant : 000D78

Yeast replicative aging: a paradigm for defining conserved longevity interventions.

Auteurs : Brian M. Wasko [États-Unis] ; Matt Kaeberlein

Source :

RBID : pubmed:24119093

Descripteurs français

English descriptors

Abstract

The finite replicative life span of budding yeast mother cells was demonstrated as early as 1959, but the idea that budding yeast could be used to model aging of multicellular eukaryotes did not enter the scientific mainstream until relatively recently. Despite continued skepticism by some, there are now abundant data that several interventions capable of extending yeast replicative life span have a similar effect in multicellular eukaryotes including nematode worms, fruit flies, and rodents. In particular, dietary restriction, mTOR signaling, and sirtuins are among the most studied longevity interventions in the field. Here, we describe key conserved longevity pathways in yeast and discuss relationships that may help explain how such broad conservation of aging processes could have evolved.

DOI: 10.1111/1567-1364.12104
PubMed: 24119093
PubMed Central: PMC4134429


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Yeast replicative aging: a paradigm for defining conserved longevity interventions.</title>
<author>
<name sortKey="Wasko, Brian M" sort="Wasko, Brian M" uniqKey="Wasko B" first="Brian M" last="Wasko">Brian M. Wasko</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kaeberlein, Matt" sort="Kaeberlein, Matt" uniqKey="Kaeberlein M" first="Matt" last="Kaeberlein">Matt Kaeberlein</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24119093</idno>
<idno type="pmid">24119093</idno>
<idno type="doi">10.1111/1567-1364.12104</idno>
<idno type="pmc">PMC4134429</idno>
<idno type="wicri:Area/Main/Corpus">000F47</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F47</idno>
<idno type="wicri:Area/Main/Curation">000F47</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F47</idno>
<idno type="wicri:Area/Main/Exploration">000F47</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Yeast replicative aging: a paradigm for defining conserved longevity interventions.</title>
<author>
<name sortKey="Wasko, Brian M" sort="Wasko, Brian M" uniqKey="Wasko B" first="Brian M" last="Wasko">Brian M. Wasko</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kaeberlein, Matt" sort="Kaeberlein, Matt" uniqKey="Kaeberlein M" first="Matt" last="Kaeberlein">Matt Kaeberlein</name>
</author>
</analytic>
<series>
<title level="j">FEMS yeast research</title>
<idno type="eISSN">1567-1364</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Caenorhabditis elegans (physiology)</term>
<term>Drosophila (physiology)</term>
<term>Models, Biological (MeSH)</term>
<term>Rodentia (physiology)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Caenorhabditis elegans (physiologie)</term>
<term>Drosophila (physiologie)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Rodentia (physiologie)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Caenorhabditis elegans</term>
<term>Drosophila</term>
<term>Rodentia</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Caenorhabditis elegans</term>
<term>Drosophila</term>
<term>Rodentia</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Modèles biologiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The finite replicative life span of budding yeast mother cells was demonstrated as early as 1959, but the idea that budding yeast could be used to model aging of multicellular eukaryotes did not enter the scientific mainstream until relatively recently. Despite continued skepticism by some, there are now abundant data that several interventions capable of extending yeast replicative life span have a similar effect in multicellular eukaryotes including nematode worms, fruit flies, and rodents. In particular, dietary restriction, mTOR signaling, and sirtuins are among the most studied longevity interventions in the field. Here, we describe key conserved longevity pathways in yeast and discuss relationships that may help explain how such broad conservation of aging processes could have evolved. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24119093</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1567-1364</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>FEMS yeast research</Title>
<ISOAbbreviation>FEMS Yeast Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Yeast replicative aging: a paradigm for defining conserved longevity interventions.</ArticleTitle>
<Pagination>
<MedlinePgn>148-59</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1567-1364.12104</ELocationID>
<Abstract>
<AbstractText>The finite replicative life span of budding yeast mother cells was demonstrated as early as 1959, but the idea that budding yeast could be used to model aging of multicellular eukaryotes did not enter the scientific mainstream until relatively recently. Despite continued skepticism by some, there are now abundant data that several interventions capable of extending yeast replicative life span have a similar effect in multicellular eukaryotes including nematode worms, fruit flies, and rodents. In particular, dietary restriction, mTOR signaling, and sirtuins are among the most studied longevity interventions in the field. Here, we describe key conserved longevity pathways in yeast and discuss relationships that may help explain how such broad conservation of aging processes could have evolved. </AbstractText>
<CopyrightInformation>© 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wasko</LastName>
<ForeName>Brian M</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Washington, Seattle, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaeberlein</LastName>
<ForeName>Matt</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AG039390</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 ES007032</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AG039390</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32ES007032</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEMS Yeast Res</MedlineTA>
<NlmUniqueID>101085384</NlmUniqueID>
<ISSNLinking>1567-1356</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017173" MajorTopicYN="N">Caenorhabditis elegans</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004330" MajorTopicYN="N">Drosophila</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012377" MajorTopicYN="N">Rodentia</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Caenorhabditis elegans</Keyword>
<Keyword MajorTopicYN="N">caloric restriction</Keyword>
<Keyword MajorTopicYN="N">calorie restriction</Keyword>
<Keyword MajorTopicYN="N">replicative life span</Keyword>
<Keyword MajorTopicYN="N">target of rapamycin</Keyword>
<Keyword MajorTopicYN="N">yeast</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>08</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24119093</ArticleId>
<ArticleId IdType="doi">10.1111/1567-1364.12104</ArticleId>
<ArticleId IdType="pmc">PMC4134429</ArticleId>
<ArticleId IdType="mid">NIHMS612462</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Life Sci. 2002 Jun;59(6):903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12169020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2000 Nov;14(14):2135-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11024000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 11;425(6954):191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12939617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2008 Dec;20(6):723-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18848886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Div. 2009 Aug 26;4:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 May 25;14(10):885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15186745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Oct;10(10):3125-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10512855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Aug 7;454(7205):728-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Nov 29;298(5599):1745</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12459580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jul 15;269(28):18638-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8034612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Oct 1;13(19):2570-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 14;299(5613):1751-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12610228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Feb 28;299(5611):1342-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12610293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10877-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17581878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Sep 2;43(5):823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21884982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol. 1956 Jul;11(3):298-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13332224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Aug;131(16):3897-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15253933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2009 Nov;11(11):1305-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Oct;22(10):1963-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Oct;38(2):348-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11069660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Aug 5;430(7000):686-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 May;152(1):179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10224252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Oct;13(10):6012-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8413204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 6;270(5233):50-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Sep;162(1):73-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Sep;10(9):1090-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19160490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Sep 19;301(5640):1731-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14500985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2005 Nov;1(5):e69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16311627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Apr 6;3(4):e56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17411345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2012 Aug;11(4):675-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22587563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2010 Feb;9(1):92-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19878144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2005 Apr;126(4):491-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15722108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Sep;22(17):3127-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 29;280(17):17038-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15684413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7540-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7638227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Aug 31;586(18):2868-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22828279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Oct 1;21(19):2410-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17908928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2011 Dec;10(6):1089-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21902802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2009 Jun-Jul;44(6-7):390-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19285548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Sep 22;477(7365):482-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21938067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Aug;5(6):847-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 May;191(1):107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22377630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 23;497(7450):451-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2005 Jul;1(1):119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 18;418(6895):344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12124627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e44785</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22970306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Oct;1790(10):1067-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19539012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Feb;6(1):111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17266680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Dec 13;492(7428):261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Feb;4(2):e24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18282106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 11;426(6967):620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1989 Jan;171(1):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2644196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Age (Dordr). 2011 Jun;33(2):143-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20640543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jan 17;493(7432):338-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23325216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1977 Nov 24;270(5635):301-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">593350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 8;410(6825):227-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11242085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2011 Aug;3(8):733-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21937765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2009 Aug;8(4):353-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Dec 15;18(24):3004-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Jun;32(5):1002-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10361302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Dec;127(6 Pt 2):1985-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7806576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 1977 Nov-Dec;6(6):413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">926867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Jun 1;13(11):1438-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Sep 16;146(6):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21906795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Sep;7(9):e1002235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 Jul 17;50(2):277-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3036373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Jan 1;10(1):156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21191185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ageing Res Rev. 2012 Apr;11(2):230-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22186033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1959 Jun 20;183(4677):1751-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13666896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 Nov 15;9(22):4501-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21084861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jul 30;460(7255):587-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19641587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2012 Oct;8(10):1494-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22914317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ageing Res Rev. 2009 Jul;8(3):199-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19427410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:407-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2011 Feb;66(2):191-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2012 Jan 10;2:102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2008;24:29-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2006 Dec;5(6):487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1977 Nov;75(2 Pt 1):422-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">400873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 26;279(48):49883-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15383542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2011 Jun 6;585(11):1537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21402069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2000 Dec 1;120(1-3):1-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11087900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Jan 15;20(2):174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2012 May 2;15(5):713-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22560223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2013 Dec;12(6):1050-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23837470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1988 May;2(5):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3290050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Jul 1;19(13):1544-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutrition. 1989 May-Jun;5(3):155-71; discussion 172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2520283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jul 16;460(7253):392-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 18;133(2):292-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2013 Feb;12(1):24-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23061800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1975 Oct;28(10):721-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1102508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Jan 16;557(1-3):136-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14741356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 1997 Jan;52(1):B48-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9008657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(11):1323-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17396225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Oct 2;326(5949):140-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19797661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2012 Feb;12(1):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22093953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 2011;76:81-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22114328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2012 Jan;133(1):37-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22212415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000Prime Rep. 2013;5:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23513177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2007 Oct;128(10):546-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17875315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2007 Feb;128(2):187-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17129597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2012 Jul 3;16(1):18-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1998 Dec 15;245(2):379-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Jan;11(1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2013 Feb;12(1):156-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23167605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Feb 25;120(4):461-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2007 Apr;42(4):275-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17174052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 8;483(7388):218-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22367546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 22;289(5487):2126-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11000115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 11;459(7248):802-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2011 Oct;10(5):885-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2008 Oct;4(7):874-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Oct 2;5(10):e261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Dec 15;10(24):4230-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22107964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Feb;6(1):95-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17266679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Jun 9;11(6):453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20519118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jul 19;297(5580):395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12089449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Sep 22;477(7365):E1-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21938026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Mar 30;335(6076):1638-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22461615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2007 Apr;5(4):265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17403371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2010 Oct;2(10):709-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21076178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2006 May;1067:10-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16803965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2013 Oct;48(10):1006-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23235143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 11;278(15):13390-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12562756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Aug 7;454(7205):709-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 May 2;89(3):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2005 Sep;126(9):913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15885745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15998-6003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15520384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Dec 20;298(5602):2398-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12471266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 2;309(5740):1581-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16141077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2011 May;46(5):369-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20970491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 Sep;2(9):E296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Dec 26;91(7):1033-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9428525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2013 Feb;12(1):67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23082874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 25;464(7288):513-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20336133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Apr 8;141(1):133-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8163165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Apr;18(4):564-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18340043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18764-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19020097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Aug 1;14(15):1872-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10921902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2008 Dec;24(12):604-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2010 Apr;9(2):285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2002 Aug-Sep;37(8-9):1023-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12213553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13091-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9789046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Apr 15;50(8):963-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21255640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Kaeberlein, Matt" sort="Kaeberlein, Matt" uniqKey="Kaeberlein M" first="Matt" last="Kaeberlein">Matt Kaeberlein</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Wasko, Brian M" sort="Wasko, Brian M" uniqKey="Wasko B" first="Brian M" last="Wasko">Brian M. Wasko</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24119093
   |texte=   Yeast replicative aging: a paradigm for defining conserved longevity interventions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24119093" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020